Category: Actovegin


Importance of Solcoseryl in infertility. 2. Effects of Solcoseryl with pathological spermiogram findings in vivo.

[Article in German]

Abstract

44 patients with different spermiogram findings were treated with Solcoseryl¿ (Messrs. Solco, Basel, Switzerland). Among the findings were 39 cases of oligozoospermia, 26 cases of asthenozoospermia and 7 cases of hypospermia. 20 subjects had already received other treatment without success. Treatment in these 20 cases had been terminted at least six months prior to our studies. All patients received 10 injections comprising 1 ampule each of Solcoseryl¿ at intervals of 1 day with breaks at the weekends. The spermiograms were analysed upon completion of treatment and two weeks, four weeks, three months and six months after completion of treatment. The effects of Solcoseryl¿ proved to be completely independent of previous treatment. The most noticeable improvement in he findings following Solcoseryl¿ application was the sperm count. This effect was observed already upon completion of treatment and reached a maximum two weeks later. The effect then decreased. In a few cases, however, sperm numbers continued to decline for up to two weeks after therapy before subsequently increasing. The findings for 44% of the patients with asthenozoospermia were at least temporarily normal after the treatment. In a few of these patients, however, the number of dead sperm also increased immeditely after therapy. Severe cases of asthenozoospermia were not influenced by Solcoseryl¿ treatment. Improvement was also found in the case of hypospermia. In view of the objective improvement of the parameters of the ejaculate and the fact that gravidity has so far occurred in 11 (25%) of the wives of the patients treated with Solcoseryl¿ (in some cases after the first three-monthly examination), attempted treatment with Solcoseryl¿ is recommended.

PMID:
7425313
[PubMed – indexed for MEDLINE]

We would like to announce that our webshop is getting a major update. New design, bug fixes (payment gateways), etc.

Currently accepted payment methods: Google checkout, Bank wire (EU), ACH (USA)  Paypal (in some cases only!) – future implementations will include Alertpay, Dotpay and Moneybookers.

You can still order via email at superhumangear@gmail.com if you wish to use any other payment method!

www.superhumangear.com

SOME OF OUR SPECIAL DEALS:

NEW ARRIVAL: TB500 thymosin beta-4 recovery protein with performance enhancing properties $60 /5 mg

NEW ARRIVAL: IGF-1 lr3 1000 mcg $60

CICACTRICURE anti-wrinkle cream with peptides: $39

LIPOSTABIL – BUY HERE

AICAR 1 g SALE – BUY HERE

HYACETAM hyaluronic acid 5 ml 5%

ACTOVEGIN 5×5 ml SALE

CEREBROLYSIN 10 ml ampoules

SERMORELIN (GEREF) 2 mg $35

>

BUY ACTOVEGIN from us $19 /5ml amp

Actovegin� is a Deproteinized Hemoderivative of Calf Blood that is obtained by ultra-filtration. The Deproteinized Hemoderivative of Calf Blood contains only physiological components, anorganic substances socle as electrolytes and essential trace elements and 30% of organic components as amino acids, oligopeptides, nucleosides, intermediary products of the carbohydrate and of the fat metabolism, and components of the cellular membranes as glycosphingolipids. One of the physiologic components of Actovegin is inositol phospho-oligosaccharides ( IPOs ). These compounds are thought to possess central and peripheral insulin effects, suggesting that a therapeutic benefit could be obtained in disorders of impaired glucose utilization. The molecular weight of the organic components is below 6000 Dalton.

Pharmacodynamics:
The active components in Actovegin promote glucose uptake by cerebral and skeletal muscle and other cells and stimulate intrinsic glucose transport by regulating glucose carrier GluT1; Actovegin activates piruvate-dehydrogenase (PDH) and thereby leads to increased utilization of glucose by cells and formation of energy-rich substances (“insulin-like effect). (Oberermaier-Kusser et al. 1989 Actovegin also increases uptake and utilization of oxygen by hypoxic tissues and cells (which can be proven by Warburg’s test) via promoting mitochondrial respiratory function and decreases formation of lactate, as a result, it protects hypoxic tissue. (Machicao, 1993; Kununaka et al. 1991)

Toxicology:
Acute toxicity: Acute toxicity tests in mice (NMRI mice, male and female mixed) showed that the fifty percent lethal doses (LD50, calculated as dry weight) were as follows:
-intravenous administration: 2.31 g/kg;
-intraperitoneal administration: 2.97 g/kg;
-sucutaneous administration: 5.57 g/kg;
-oral administration: 7.93 g/kg

Subchronic toxicity: Experiments performed in rabbits (Deutsche Riesenschecken rabbits, female) demonstrated that there was no evidence of either macroscopic or microscopic organic pathological changes as compared to normal control animals after infusing 20% Actovegin intravenously once a day at a dose of 7.0 ml/kg, 7 days a week, for 3 months. Actovegin has no toxicity on fertility, embryo and fetus; it has no teratogenic, mutagenic, or carcinogenic effects.

Pharmacokinetics:
Actovegin� is a calf-blood derived hemodialysate. Since it is not a single-component drug, conducting a pharmacokinetic study is impossible. However, for its bioavailability, certain pharmacological studies in animals may provide some reference: glucose tolerance studies in rats showed that blood glucose level started to decline as early as at 5 minutes after intravenous administration of Actovegin , and the effect reached its peak at 180 minutes after administration. (Bachmann et al. 1968) improved at 15 minutes after parenteral administration of Actovegin . (Quadbeck et al. 1964)

Indications
Disturbances in the cerebral circulation and nutrition (ischemic insultus, cranio-cerebral traumas).
Disturbances of peripheral (arterial, venous) blood flow and sequels resulting from these disturbances (arterial angiopathy, ulcus cruris).
Skin graftings.
Burns, scalds, erosions.
Wound-healing impairment: torpid wounds, decubitus;
Radiation-induced skin and mucous membrane lesions (prophylaxis and therapy).

Mode of action
Actovegin produces an organ-unrelated increase of the cellular energy metabolism. The activity is confirmed by measurement of the increased uptake and of the elevated utilization of glucose and oxygen. These two effects are coupled and they result in a rise of the ATP-turnover and thus in a greater provision of energy in the cell. In deficiency states with impairment of the normal functions of the energy metabolism (hypoxia, substrate deficiency) and in states of increased energy requirement (reparation, regeneration) Actovegin promotes the energy-dependent processes of the functional metabolism and of the conservation metabolism. An increase of the blood supply is seen as a secondary effect

Effects related to therapeutic indication:
Effects related to glucose transport
-The IPO fraction of Actovegin demonstrated a positive effect on glucose carrier activity( GLUT1) in the plasma membrane
-Actovegin stimulated glucose uptake in cerebral tissues, as well as other isolated animal tissues
Effects related to glucose utillization
-The IPO fraction of Actovegin activated glucose oxidation as well as the PHD complex
-The IPO fraction of Actovegin acts indirectly on the citric acid cycle by causing increased formation of acetyl COA
Effects related to oxygen uptake on energy metabolism
-Actovegin increased the respiratory capacity of mitochondria
-Actovegin improved oxygen uptake in Anesthetized dogs
-Actovegin demonstrated a positive effect on cerebral metabolism of rats under conditions of Hypoxia

Safety of Actovegin

The manufacturer Nycomed Austria GmbH confirms that all measures are in place to guarantee the TSE safety of Actovegin. According to the actual guideline EMEA/410/01 final (issued in February 2001, replacing CPMP/BWP/1230 REV.1) and the Final Opinion of the Scientific Steering Committee on the geographical BSE risk (issued in July 200) the safety of a medicinal product is determined by several important factors:

1. Animals as source of material: the most satisfactory source of materials is from countries which are free of BSE and have appropriate surveillance systems. Materials may be used from countries with a low BSE incidence. The calf blood used as raw material for Actovegin derives from calves born, raised and slaughtered in Australia. Australia is officially categorised as BSE � and Scrapie free country by the OIE (World Organization for Animal Health) and the SSC (Scientific Steering Committee of the European Union). Surveillance systems are in place.

2. Parts of animal bodies and body fluids used as starting materials: tissues and body fluids are categorised in four categories (from category I = high infectivity like brain to category IV= safest category, no detectable infectivity like blood and milk). Actovegin is manufactured from calf blood, blood is in the safest tissue category IV.

3. Age of animals: the sourcing from young animals is seen as very important safety factor. The blood used as raw material for Actovegin production derives from calves below six months of age. The calves were never fed animal carcasses fodder and are declared fit for human consumption, as all proven by veterinary certificates. Moreover the traceability of every Actovegin batch back to the individual calves as blood donors is ensured. The mother cows (dams) of the calves are also known.

4. A production process should be designed which is thought to remove or inactivate TSE agents. Validation studies are currently not generally required. The manufacturing process of Actovegin is BSE validated, thus proven to be capable of removing hypothetically present TSE agents.

5. A risk analysis was performed according to the PhPMA system showing that Actovegin is absolutely BSE safe. Moreover Actovegin is a natural drug with proven efficacy and also a general favourable safety profile over decades. These benefits cannot be substituted by a chemical drug. In conclusion, Actovegin is BSE safe and fullfills even more safety measures than required by actual guidelines


>

Abstract

Actovegin® is a biological drug manufactured from a natural source: it is a calf blood hemodialysate. Its therapeutic benefits stem from a variety of pharmacodynamic actions that can be summarized to a common goal, i.e. the enhancement of cellular metabolism; this results from an insulin-like activity mediated by Inositol-phospho-oligosaccharides. Actovegin®

Actovegin-Ergogenic Aid or Not results in beneficial effects in several pathophysiological clinical settings including malfunction of the blood circulation and trophic disturbances in the brain, impairment of peripheral blood circulation and associated diseases, dermal transplants and acute and chronic wounds. Here, we give an overview of the pharmacodynamic actions of calf-blood hemidialysate and its beneficial effects in a variety of clinical settings.

By Chad Robertson B.Sc (KIN), B.Sc (PHARM)

There has been a great deal of hype in the media of late regarding the drug Actovegin after reports that a world renown physician who treated Tiger Woods is under investigation for apparently using it. My intentions of this article is to educate the public on the pharmacological properties of Actovegin and how to derive the same clinical applications using natural nutrients. As reported, Actovegin is a protein free blood derived extract from calf used for treating dementia, cerebrovascular insufficiency, and periperal vascular resistance. It is manufactured by a European based pharmaceutical company, Nycomed Austria

Properties of Actovegin

An extensive Medline literature search revealed older German and Russian studies focusing on Actovegin’s physiologic effects on glucose metabolism and cerebral circulation. There are no reports on its use in improving athletic performance and scant reviews for it’s treatment of sports related injuries. Nevertheless, since its introduction, the athletic community has realized the potential of Actovegin to increase mitochondrial ATP energy production through increased glucose and oxygen utilization.

Improvement of glucose metabolism

Jacob S et. al. (1996) was one of the first to show that Actovegin stimulated the uptake of glucose into adipocytes by inositol-phosphate-oligosaccharides (IPO), a key component of Actovegin. IPO is thought to possess insulin-mimicking effects by regulating glucose carrier activity 1, 2. Improvements in glucose tolerance occurs without affecting endogenous serum insulin levels and this effect was seen in diabetics rather than those with normal carbohydrate metabolism 3.

Increase peripheral blood flow

Restrictions in peripheral blood flow due to arterial occlusive disease results in muscle pain during rest and exercise. A study was undertaken to determine the effects of intravenous (IV), intraarterial (IA) Actovegin administration and physical exercise on peripheral arterial occlusive disease 4.

Over a four week period, patients who received IA injections achieved a pain free walking distance of 44.9% compared to 37.8% in the IV group. However, physical exercise showed improvements in pain free walking distance of 66.9% although the results were not considered significant compared to IA Actovegin.

Hypoxic states and dementia

The parietal cortex is responsible for processing visual information and spatial directed attention and shrinkage to the area leads to dementia. It appears Actovegin improves the cognitive processing in the parietal cortex in age associated memory impairment 5. Kanowski S et. al. 1995 showed improvements in organic brain syndrome patients in social behavior and mental performance with injections of Actovegin compared to placebo 6.

Actovegin improves energy metabolism in hypoxia by increasing uptake of glucose and oxygen 7.

Sports injuries

Rapid recovery times from sports related injuries are important for athletes. Local injections of Actovegin has been shown to significantly shorten recovery time in muscle injury compared to placebo 8.

How does Actovegin compare to ACS

Autologous Conditioned Serum (ACS) is produced by physical and chemical stimulation of whole blood to increase the concentration of specific growth factors such as FGF-2, TGF-beta1 and HGF. During muscle regeneration, a host of growth factor are involved in the repair process but FGF-2, TGF-beta 1, and HGF are key regulators of muscle satellite cell activation. Wright-Carpenter et.al. 2004 compared the effects of ACS against Actovegin/Traumeel (control) for muscle strains. Local injections of ACS shortened recovery time to healing (as shown on MRI scans) and showed an almost complete regression of edema and bleeding after 14 days compared to the control group which only possessed mild effects 9.

Comparison to alternative products

It is interesting to note how Actovegin’s biochemical and physiological properties compares to other products currently used in similiar disease states.

R-Lipoic Acid

Actovegin has been proposed to increase glucose utilization by regulating glucose transporter protein (GLUT-1). Lipoic acid mimics insulin action by affecting GLUT-1 and GLUT-4 10. Glut-1 involves glucose transport into red blood cells and the brain whereas Glut-4 transports glucose into fat and muscle cells and has a greater impact on blood sugar levels than Glut-1.

Skeletal muscle depends on insulin to transport glucose into myocytes where it is used to produce energy. During exercise, muscle contractions upregulate expression of GLUT-4 thereby reducing blood sugar levels and overcoming insulin resistant skeletal muscle 11. Another important property of Lipoic acid is it’s ability to strengthen antioxidant defenses by increasing glutathione and protect against exercise induced oxidative stress 12.

Taurine

The hypoglycemic properties of taurine appear to be much greater after glucose supplementation rather than administration before a glucose challenge 13. Taurine acts by stimulating the secretion of insulin from pancreatic beta cells in addition to protecting it from lipid peroxidation through it’s antioxidant action. Taurine’s antioxidant property also extends to skeletal muscles where it may enhance exercise performance by attenuating damage to muscle tissues induced by exercise 14.

Vinpocetine

Vinpocetine, a derivative from the periwinkle plant, has been used as a nootropic to enhance mental function and as a drug to treat cerebral ischemia. Like Actovegin, vinpocetine can increase cerebral blood flow in ischemic stroke patients especially in areas which concentrated the drug the most 15. However, it’s effect on the metabolic rate of glucose in the brain is minimal and the clinical use of vinpocetine in dementia is not conclusive 16.

Conclusion

Similiarities exists between Actovegin and the natural products lipoic acid, taurine and vinpocetine to improve blood flow and increase glucose disposal. Current well designed studies on it’s use in sport injuries and enhancement of performance has yet to be conducted.


>a

Solcoseryl from Valeant, Switzerland
5×5 ml amp IV/IM $70/box superhumangear@gmail.com

WHAT IS IT EXACTLY: a concentrated deproteinized calf blood extract with trophic and healing action. Contains nucleotides, nucleozides, glycolipids, oligo-peptides, amino acids, essential microelements, electrolytes and intermediate glucid and lipid metabolism products. Stimulates ATP synthesis through the glucose and oxygen caption growth by special cells in conditions of tissue hypoxia, accelerates regeneration of cut tissues, angiogenesis, revascularisation of ischemic tissues, collagen synthesis and plagues reepitelization. If you are reading this, you probably know what a wonderful product this is. Unfortunately, it is very hard to get for the Western people, but no wonder it is still NO 1 in the ex-Soviet countries’ drugstore sales. – works as a NOOTROPIC – IMPROVE ATHLETIC PERFORMANCE THRU BETTER OXYGEN UTILIZATION and ATP TURNOVER – REJUVENATE THE BODY AND SKIN THRU BETTER COLLAGEN SYNTHESIS AND OXYGENATION OF TISSUES – facilitate healing of BURNS and ULCERS – a tissue respiration stimulating agent – strong ANTI-HYPOXIC effect – improve GLUCOSE METABOLISM and transport = a key for diabetes treatment – anti-ischemia, anti angina – therapy of hemorrhagic shock – myocardiac infarction treatment – cerebral hemorrhage treatment Elementary structure of the medication was investigated. It revealed that such micro- and macro elements as Se, Fe, Mn, Cr, Pb, Sr, Br, Cu, Zn, S, Ca, K, Cl are presented in Solcoseryl. The micro- and macro elements are in a complex with bioligands, which determines a part of Solcoseryl’s pharmacological activity or in other words an influence on homeostasis of the organism. Prescribed for: atherosclerotic or diabetic angiopathy; cerebral, ischemic or haemorrhagic ictus, myocardium infarct, trophic ulcers, decubitus, spread chemical and termic burns. For ophthalmic forms – mechanical, chemical or termic (traumas, combustions) ocular lesions, ulcers and erosions corneic and conjunctival, cornea and conjunctive inflammatory diseases (dry keratoconjunctivitis, keratites, bulous keratitis), irritation produced by contact lenses. For ointment – treatment of trenant plagues. It is applied around the plague and on the newly formed epithelium at its boundaries. If the plague doesn’t ooze anymore it is totally covered with the ointment.