Effects of alfacalcidol on circulating cytokines and growth factors in rat skeletal muscle

Source

Institute for Biomedical Research into Human Movement and Health, Manchester Metropolitan University, John Dalton Building, Oxford Road, Manchester, M5 1GD, UK.

Abstract

Supra-physiological levels of vitamin D induce skeletal muscle atrophy, which may be particularly detrimental in already sarcopaenic elderly. Neither the cause nor whether the atrophy is fibre type specific are known. To obtain supraphysiological levels of circulating vitamin D (1,25(OH)(2)D(3)) 27.5-month-old female Fischer(344) × Brown Norway F1 rats were orally treated for 6 weeks with vehicle or the vitamin D analogue alfacalcidol. Alfacalcidol treatment induced a 22% decrease in body mass and 17% muscle atrophy. Fibre atrophy was restricted to type IIb fibres in the low-oxidative part of the gastrocnemius medialis only (-22%; P < 0.05). There was a concomitant 1.6-fold increase in mRNA expression of the ubiquitin ligase MuRF-1 (P < 0.001), whereas those of insulin-like growth factor 1 and myostatin were not affected. Circulating IL-6 was unaltered, but leptin and adiponectin were decreased (-39%) and increased (64%), respectively. The treated rats also exhibited a reduced food intake. In conclusion, supraphysiological levels of circulating 1,25(OH)(2)D(3) cause preferential atrophy of type IIb fibres, which is associated with an increased expression of MuRF-1 without evidence of systemic inflammation. The atrophy and loss of body mass in the presence of supra-physiological levels of vitamin D are primarily due to a reduced food intake.

PMID:
21909988
[PubMed – as supplied by publisher]