Category: telomere


Leukocyte telomere length is preserved with aging in endurance exercise-trained adults and related to maximal aerobic capacity

Source

Department of Integrative Physiology, University of Colorado, Boulder, CO 80309, USA.

Abstract

Telomere length (TL), a measure of replicative senescence, decreases with aging, but the factors involved are incompletely understood. To determine if age-associated reductions in TL are related to habitual endurance exercise and maximal aerobic exercise capacity (maximal oxygen consumption, VO(2)max), we studied groups of young (18-32 years; n=15, 7 male) and older (55-72 years; n=15, 9 male) sedentary and young (n=10, 7 male) and older (n=17, 11 male) endurance exercise-trained healthy adults. Leukocyte TL (LTL) was shorter in the older (7059+/-141 bp) vs. young (8407+/-218) sedentary adults (P<0.01). LTL of the older endurance-trained adults (7992+/-169 bp) was approximately 900 bp greater than their sedentary peers (P<0.01) and was not significantly different (P=0.12) from young exercise-trained adults (8579+/-413). LTL was positively related to VO(2)max as a result of a significant association in older adults (r=0.44, P<0.01). Stepwise multiple regression analysis revealed that VO(2)max was the only independent predictor of LTL in the overall group. Our results indicate that LTL is preserved in healthy older adults who perform vigorous aerobic exercise and is positively related to maximal aerobic exercise capacity. This may represent a novel molecular mechanism underlying the “anti-aging” effects of maintaining high aerobic fitness.

2010 Elsevier Ireland Ltd. All rights reserved.

PMID:
20064545
[PubMed – indexed for MEDLINE]
PMCID: PMC2845985
Advertisements

Higher serum vitamin D concentrations are associated with longer leukocyte telomere length in women

J Brent Richards, Ana M Valdes, Jeffrey P Gardner, Dimitri Paximadas, Masayuki Kimura, Ayrun Nessa, Xiaobin Lu, Gabriela L Surdulescu, Rami Swaminathan, Tim D Spector and Abraham Aviv

ABSTRACT

Background: Vitamin D is a potent inhibitor of the proinflammatory response and thereby diminishes turnover of leukocytes. Leukocyte telomere length (LTL) is a predictor of aging-related disease and decreases with each cell cycle and increased inflammation.

Objective: The objective of the study was to examine whether vitamin D concentrations would attenuate the rate of telomere attrition in leukocytes, such that higher vitamin D concentrations would be associated with longer LTL.

Design: Serum vitamin D concentrations were measured in 2160 women aged 18–79 y (mean age: 49.4) from a large population-based cohort of twins. LTL was measured by using the Southern blot method.

Results: Age was negatively correlated with LTL (r = –0.40, P < 0.0001). Serum vitamin D concentrations were positively associated with LTL (r = 0.07, P = 0.0010), and this relation persisted after adjustment for age (r = 0.09, P < 0.0001) and other covariates (age, season of vitamin D measurement, menopausal status, use of hormone replacement therapy, and physical activity; P for trend across tertiles = 0.003). The difference in LTL between the highest and lowest tertiles of vitamin D was 107 base pairs (P = 0.0009), which is equivalent to 5.0 y of telomeric aging. This difference was further accentuated by increased concentrations of C-reactive protein, which is a measure of systemic inflammation.

Conclusion: Our findings suggest that higher vitamin D concentrations, which are easily modifiable through nutritional supplementation, are associated with longer LTL, which underscores the potentially beneficial effects of this hormone on aging and age-related diseases.